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Outline

2
• Canonial sampling:� Sampling e�ieny: why, when and how� NVT moleular dynamis loal and global shemes� The (generalized) Langevin equation
• A ase study: liquid, �exible water� Optimal sampling� Preserving dynamial properties� The making of a GLE thermostat
• Other appliations of GLE thermo: all for implementers...



Moleular Dynamis
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• Modelling of the dynamis of a system by reproduing the motion of theatoms

• Numerial integration of Hamilton's equations:
∂q

∂t
=

∂H

∂p
=

p

m

∂p

∂t
= −∂H

∂q
= −∂V

∂q

• Must modify to sample anonial ensemble



Ergodi sampling

4
• Ergodi hypothesis: equivalene between ensemble averages and timeaverages along a trajetory

〈A〉 =
ˆ

dpdqA (q,p) e−βH(q,p) = lim
T→∞

1

T

ˆ T

0
A (q (t) ,p (t)) dt

� Points along the trajetory must be distributed based on e−βH(q,p)

⇔ �utuation-dissipation theorem/detailed balane



Measuring ergodiity

5
• The error on averages dereases with the square root of the number ofunorrelated samples

• Sampling more often than the orrelation time does not improveonvergeny
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Measuring ergodiity
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• The error on averages dereases with the square root of the number ofunorrelated samples

• Autoorrelation funtion:

〈A (t)A (0)〉 =
1
T

´ T
0 (A (s+ t)− 〈A〉) (A (s)− 〈A〉) ds

〈A2〉 − 〈A〉2
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• The error on averages dereases with the square root of the number ofunorrelated samples

• Autoorrelation funtion:

〈A (t)A (0)〉 =
1
T

´ T
0 (A (s+ t)− 〈A〉) (A (s)− 〈A〉) ds

〈A2〉 − 〈A〉2� Will it rain as muh as today?
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Measuring ergodiity

5
• The error on averages dereases with the square root of the number ofunorrelated samples

• Autoorrelation funtion:

〈A (t)A (0)〉 =
1
T

´ T
0 (A (s+ t)− 〈A〉) (A (s)− 〈A〉) ds

〈A2〉 − 〈A〉2

• Averages over a time interval T will be a�eted by an error whihdereases as 1/√T/2τ

τ =

ˆ

∞

0
〈A (t)A (0)〉 dt

• Computing autoorrelation funtions is hard: must sample for hundredsof times τ !



Time sales

6
• The evolution of a non-trivial system is a ombination of fast and slowomponents

• Correspondingly, the autoorrelation funtion shows di�erent time sales
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Time sales

6
• The evolution of a non-trivial system is a ombination of fast and slowomponents

• Correspondingly, the autoorrelation funtion shows di�erent time sales

• Di�erent observables may have di�erent time sales
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Constant-Temperature MD
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• Relax isolated-system hypothesis: loser to �real life� than miroanonialMD for small systems

• One must modify Hamilton's equations (Andersen, Langevin,Nosé-Hoover, stohasti resaling. . . )� Mimik the e�et of a heat bath (open system, total energy�utuates)� Can we de�ne a onserved quantity (useful to hek timestep)?

• The anonial ensemble (P (p, q) ∝ e
−β

[

p2

2m
+V (q)

]) is sampled:� Initial equilibration (bring the system quikly to temperature)� Dynamial properties are altered� E�ient sampling of stati properties (how to improveergodiity?)



Loal and global thermostats

8
• A global thermostat enfores the distribution of thetotal kineti energy

P (K) dK ∝ K(Nf/2−1)e−K/kBTdK

� Little disturbane on the dynamis, relies on in-ternal ouplings
• A loal enfores anonial distribution of individualdegrees of freedom

P (pi) dpi ∝ e−p2i /2mkBTdpi

� Greater disturbane, atively ounterats loalimbalane



Langevin Dynamis

9
• A linear, Markovian stohasti equation for the momenta

ṗ (t) = −γp (t) +
√

2mγTξ (t)

• Constant temperature is ahieved by the balane of frition and gaussianwhite noise ⇒ �utuation-dissipation theorem,
〈

ξ (t) ξ
(

t′
)〉

= δ
(

t− t′
)

• Test Langevin thermostat on a 1-d harmoni osillator



A Langevin Osillator
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• Langevin dynamis on a 1-D osillator with ω = 1. Trajetory of kinetiand potential energy and position, γ = 0, γ = 1 and γ = 103.
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A Langevin Osillator
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• We an ompute analytially orrelation times, and distinguish di�erentregimes
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Optimal-sampling GLE
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• What an we do if there are multiple frequenies? Only one wouldrespond optimally to a Langevin thermostat!

Use non-Markovian noiseto obtain onstant e�ieny!
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Optimal-sampling GLE

11
• What an we do if there are multiple frequenies? Only one wouldrespond optimally to a Langevin thermostat! Use non-Markovian noiseto obtain onstant e�ieny!
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√
mTζ (t)

〈ζ (t) ζ (0)〉 = K (t)



Let's get into water
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• A ritial disussion of di�erent shemes applied to liquid water� Water is di�ult! Normal modes span several order of magnitude infrequeny� Di�usive motion requires omplex rearrangements in H-bondsnetwork

• Classial dynamis of liquid water using a �exible, TIP4P-like model

• We monitor total potential energy, ell's dipole moment (neessay toevaluate ǫ, di�ult to onverge) and kineti temperature projeted oninternal modes, librations and enter of mass motion.



Overdamped LE

13
• White-noise loal Langevin thermostat, γ−1 = 1 fs� Lightning-fast deorrelation of veloities� Overdamped dynamis, on�gurational sampling is greatly sloweddown
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Mild LE
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• White-noise loal Langevin thermostat, mild frition γ−1 = 1 ps� Slower relaxation of momenta� No overdamping ⇒ reasonable sampling of positions
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Optimal Sampling LE

15
• Optimal-sampling LE, �tted to enompass the whole range of vibrations� E�ient sampling of all normal modes� Redued overdamping, avoided slowing-down of on�gurationsampling
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Optimal Sampling LE
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• Optimal-sampling LE, �tted to enompass the whole range of vibrations� E�ient sampling of all normal modes� Redued overdamping, avoided slowing-down of on�gurationsampling
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What if we go global?

16
• Stohasti veloity resaling, γ−1 = 1 fs. The dynamis is not disturbedand total kineti energy is sampled very e�iently!� Very e�ient sampling of the di�ult property of total dipolemoment� Projeted temperatures relax slowly... do we really are?
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The magi of MD

17
• Global thermostats work niely for slow on�gurational propertiesbeause they do not disturb slow, di�usive modes
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Vibrational density of states is almost equal to NVE!
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The magi of MD

17
• Global thermostats work niely for slow on�gurational propertiesbeause they do not disturb slow, di�usive modes
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No free lunh!

18
• One must pay attention when using global thermostats: loalequilibration relies on intrinsi ergodiity of the system
• This is partiularly dangerous when performing metadynamis, orquasi-equilibrium free-energy methods in general
• Energy is injeted in loalized modes, but only the total kineti energy ismonitored� Total temperature is resaled ⇒ one feels safe but...



No free lunh!

18
• One must pay attention when using global thermostats: loalequilibration relies on intrinsi ergodiity of the system
• This is partiularly dangerous when performing metadynamis, orquasi-equilibrium free-energy methods in general
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A GLOCAL thermostat

19
• Let's put all the ideas together. We want to use a loal thermostat, butleave di�usive, olletive motions alone. We must think global, and atloal!

• Within GLE framework one an estimate and minimize the disturbaneon seleted frequenies (η (ω) parameter). Also, we require e�etiveoupling by maximizing κV = 1/ωτV .
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• Let's put all the ideas together. We want to use a loal thermostat, butleave di�usive, olletive motions alone. We must think global, and atloal!

• Within GLE framework one an estimate and minimize the disturbaneon seleted frequenies (η (ω) parameter). Also, we require e�etiveoupling by maximizing κV = 1/ωτV .
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Behmark: global vs GLOCAL
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• Comparison of sampling properties of stohasti resale vs GLE
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• Comparison of sampling properties of stohasti resale vs GLE
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Behmark: global vs GLOCAL

20
• Comparison of sampling properties of stohasti resale vs GLE
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Conlusions: a list of aveats
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Thermostatting an impat your simulation in many di�erent ways!

• Di�erent observables might have very di�erent relaxation times,and an observable might have orrelations on multiple time sales

• Moleular dynamis is very good at sampling di�usive motion.Aggressive thermostatting might degrade sampling e�ieny

• Do not look at total kineti temperature alone: that an be madeto unorrelate very quikly by just resampling momenta at everytime-step
• Everything beomes more triky when doing biased dynamis: im-pats not only e�ieny but also the atual result!

• Global thermostats do very well on strongly oupled systems, butone must be areful, as they might hide non-equilibrium onditions.
!

!
!

!
!



Conlusions: why olors?

22
• Testing the thermostat is boring and expensive. Still, a bad hoie anause larger statistial and even systemati errors!
• GLE framework allows to predit the properties of the dynamis frommany points of view:� sampling e�ieny in the harmoni limit� disturbane of the dynamial properties
• Optimal-sampling GLE provides a no-brainer loal thermostat whih willbe strong on loal modes and won't overdamp di�usion

• With a little e�ort, even better performane an be obtained: it's truly àla arte thermostating!
• You an do muh more: quantum thermostat, δ-termostat, more toome... all within the same framework.

• ... will you help me implement it in established MD odes?



olored thanks...
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