Blocks
NICE
- class blocks.grouping.StandardBlock(covariants_expansioner=None, covariants_purifier=None, covariants_pca=None, invariants_expansioner=None, invariants_purifier=None, invariants_pca=None, guaranteed_parts_fitted_consistently=False)
Bases:
object
Block for standard procedure of body order increasement step
- fit(first_even, first_odd, second_even, second_odd, old_even_covariants=None, old_odd_covariants=None, old_even_invariants=None, clebsch_gordan=None)
- get_intermediate_shapes()
- is_fitted()
- transform(first_even, first_odd, second_even, second_odd, old_even_covariants=None, old_odd_covariants=None, old_even_invariants=None)
- class blocks.grouping.StandardSequence(blocks, initial_pca=None, initial_scaler=None, guaranteed_parts_fitted_consistently=False)
Bases:
object
Block implementing logic of main NICE sequence
- fit(coefficients, clebsch_gordan=None)
- get_intermediate_shapes()
- is_fitted()
- transform(coefficients, return_only_invariants=False)
- blocks.grouping.check_if_all_fitted(parts)
Compressors
- class blocks.compressors.IndividualLambdaPCAs(n_components=None, num_to_fit='10x')
Bases:
object
Block to do pca step for covariants of single parity. It operates with instances of Data class
- fit(data)
- get_importances()
- is_fitted()
- transform(data)
- class blocks.compressors.IndividualLambdaPCAsBoth(*args, **kwargs)
Bases:
object
Block to do pca step for covariants of both parities. It operates with even-odd pairs of instances of Data class
- fit(data_even, data_odd)
- is_fitted()
- transform(data_even, data_odd)
- class blocks.compressors.InvariantsPCA(*args, num_to_fit='10x', **kwargs)
Bases:
sklearn.decomposition._pca.PCA
Block to do pca step for invariants. It operates with 2d numpy arrays
- fit(X)
Fit the model with X.
- Parameters
X (array-like of shape (n_samples, n_features)) – Training data, where n_samples is the number of samples and n_features is the number of features.
y (Ignored) –
- Returns
self – Returns the instance itself.
- Return type
object
- fit_transform(X)
Fit the model with X and apply the dimensionality reduction on X.
- Parameters
X (array-like of shape (n_samples, n_features)) – Training data, where n_samples is the number of samples and n_features is the number of features.
y (Ignored) –
- Returns
X_new – Transformed values.
- Return type
ndarray of shape (n_samples, n_components)
Notes
This method returns a Fortran-ordered array. To convert it to a C-ordered array, use ‘np.ascontiguousarray’.
- is_fitted()
- process_input(X)
- transform(X)
Apply dimensionality reduction to X.
X is projected on the first principal components previously extracted from a training set.
- Parameters
X (array-like, shape (n_samples, n_features)) – New data, where n_samples is the number of samples and n_features is the number of features.
- Returns
X_new
- Return type
array-like, shape (n_samples, n_components)
- blocks.compressors.get_num_fit(desired_num, block_size)
Expansioners
- class blocks.expansioners.ThresholdExpansioner(num_expand=None, mode='covariants', num_threads=None)
Bases:
object
Block to do Clebsch-Gordan iteration. It uses two even-odd pairs of Data instances with covariants to produce new ones. If first even-odd pair contains covariants of body order v1, and the second v2, body order of the result would be v1 + v2.
- fit(first_even, first_odd, second_even, second_odd, clebsch_gordan=None)
- is_fitted()
- transform(first_even, first_odd, second_even, second_odd)
Purifiers
- class blocks.purifiers.CovariantsIndividualPurifier(regressor=None, num_to_fit='10x', max_take=None)
Bases:
object
Block to purify single covariants lambda channel. It operates with 3 dimensional numpy arrays with indexing [environmental_index, feature_index, m]
- fit(old_blocks, new_block, l)
- is_fitted()
- transform(old_blocks, new_block, l)
- class blocks.purifiers.CovariantsPurifier(regressor=None, num_to_fit='10x', max_take=None)
Bases:
object
Block to purify covariants of single parity. It operates with instances of Data class with covariants
- fit(old_datas, new_data)
- is_fitted()
- transform(old_datas, new_data)
- class blocks.purifiers.CovariantsPurifierBoth(regressor=None, num_to_fit='10x', max_take=None)
Bases:
object
Block to purify covariants of both parities. It operates with pairs of instances of Data class with covariants
- fit(old_datas_even, new_data_even, old_datas_odd, new_data_odd)
- is_fitted()
- transform(old_datas_even, new_data_even, old_datas_odd, new_data_odd)
Miscellaneous
- class blocks.miscellaneous.InitialScaler(mode='signal integral', individually=False)
Bases:
object
Block to scale initial spherical expansion coefficients in a certain way. It allows to both normalize coefficients for each environment individually, and to multiply whole array to single scaling factor, thus, preserving information about relative scale
- fit(coefficients)
- is_fitted()
- transform(coefficients)