import math
from typing import Any
from warnings import warn
import torch
from ..calculators import EwaldCalculator
from .tuner import GridSearchTuner, TuningErrorBounds
[docs]
def tune_ewald(
charges: torch.Tensor,
cell: torch.Tensor,
positions: torch.Tensor,
cutoff: float,
neighbor_indices: torch.Tensor,
neighbor_distances: torch.Tensor,
full_neighbor_list: bool = False,
prefactor: float = 1.0,
exponent: int = 1,
ns_lo: int = 1,
ns_hi: int = 14,
accuracy: float = 1e-3,
) -> tuple[float, dict[str, Any], float]:
r"""
Find the optimal parameters for :class:`torchpme.EwaldCalculator`.
.. note::
The :func:`torchpme.tuning.ewald.EwaldErrorBounds.forward` method takes floats
as the input, in order to be in consistency with the rest of the package --
these parameters are always ``float`` but not ``torch.Tensor``. This design,
however, prevents the utilization of ``torch.autograd`` and other ``torch``
features. To take advantage of these features, one can use the
:func:`torchpme.tuning.ewald.EwaldErrorBounds.err_rspace` and
:func:`torchpme.tuning.ewald.EwaldErrorBounds.err_kspace`, which takes
``torch.Tensor`` as parameters.
:param charges: torch.tensor of shape ``(len(positions, 1))`` containing the atomic
(pseudo-)charges
:param cell: torch.tensor of shape ``(3, 3)``, where ``cell[i]`` is the i-th basis
vector of the unit cell
:param positions: torch.tensor of shape ``(N, 3)`` containing the Cartesian
coordinates of the ``N`` particles within the supercell.
:param cutoff: float, cutoff distance for the neighborlist
:param exponent: :math:`p` in :math:`1/r^p` potentials, currently only :math:`p=1`
is supported
:param neighbor_indices: torch.tensor with the ``i,j`` indices of neighbors for
which the potential should be computed in real space.
:param neighbor_distances: torch.tensor with the pair distances of the neighbors for
which the potential should be computed in real space.
:param full_neighbor_list: If set to :py:obj:`True`, a "full" neighbor list
is expected as input. This means that each atom pair appears twice. If
set to :py:obj:`False`, a "half" neighbor list is expected.
:param prefactor: electrostatics prefactor; see :ref:`prefactors` for details and
common values.
:param ns_lo: Minimum number of spatial resolution along each axis
:param ns_hi: Maximum number of spatial resolution along each axis
:param accuracy: Recomended values for a balance between the accuracy and speed is
:math:`10^{-3}`. For more accurate results, use :math:`10^{-6}`.
:return: Tuple containing a float of the optimal smearing for the :class:
`CoulombPotential`, and a dictionary with the parameters for
:class:`EwaldCalculator`, and the timing of this set of parameters.
Example
-------
>>> import torch
>>> positions = torch.tensor([[0.0, 0.0, 0.0], [0.4, 0.4, 0.4]])
>>> charges = torch.tensor([[1.0], [-1.0]])
>>> cell = torch.eye(3)
>>> neighbor_distances = torch.tensor(
... [0.9381, 0.9381, 0.8246, 0.9381, 0.8246, 0.8246, 0.6928],
... )
>>> neighbor_indices = torch.tensor(
... [[0, 1], [0, 1], [0, 1], [0, 1], [0, 1], [0, 1], [0, 1]]
... )
>>> smearing, parameter, timing = tune_ewald(
... charges,
... cell,
... positions,
... cutoff=1.0,
... neighbor_distances=neighbor_distances,
... neighbor_indices=neighbor_indices,
... accuracy=1e-1,
... )
"""
# if cell is 0 `min_dimension` will be zero as well; we raise a propper error later
min_dimension = float(torch.min(torch.linalg.norm(cell, dim=1)))
params = [{"lr_wavelength": min_dimension / ns} for ns in range(ns_lo, ns_hi + 1)]
tuner = GridSearchTuner(
charges=charges,
cell=cell,
positions=positions,
cutoff=cutoff,
exponent=exponent,
neighbor_indices=neighbor_indices,
neighbor_distances=neighbor_distances,
full_neighbor_list=full_neighbor_list,
prefactor=prefactor,
calculator=EwaldCalculator,
error_bounds=EwaldErrorBounds(charges=charges, cell=cell, positions=positions),
params=params,
)
smearing = tuner.estimate_smearing(accuracy)
errs, timings = tuner.tune(accuracy)
# There are multiple errors below the accuracy, return the one with the shortest
# calculation time. The timing of those parameters leading to an higher error than
# the accuracy are set to infinity
if any(err < accuracy for err in errs):
return smearing, params[timings.index(min(timings))], min(timings)
# No parameter meets the requirement, return the one with the smallest error
warn(
f"No parameter meets the accuracy requirement.\n"
f"Returning the parameter with the smallest error, which is {min(errs)}.\n",
stacklevel=1,
)
return smearing, params[errs.index(min(errs))], timings[errs.index(min(errs))]
[docs]
class EwaldErrorBounds(TuningErrorBounds):
r"""
Error bounds for :class:`torchpme.calculators.ewald.EwaldCalculator`.
.. math::
\text{Error}_{\text{total}} = \sqrt{\text{Error}_{\text{real space}}^2 +
\text{Error}_{\text{Fourier space}}^2
:param charges: torch.tensor of shape ``(len(positions, 1))`` containing the atomic
(pseudo-)charges
:param cell: torch.tensor of shape ``(3, 3)``, where ``cell[i]`` is the i-th basis
vector of the unit cell
:param positions: torch.tensor of shape ``(N, 3)`` containing the Cartesian
coordinates of the ``N`` particles within the supercell.
Example
-------
>>> import torch
>>> positions = torch.tensor([[0.0, 0.0, 0.0], [0.4, 0.4, 0.4]])
>>> charges = torch.tensor([[1.0], [-1.0]])
>>> cell = torch.eye(3)
>>> error_bounds = EwaldErrorBounds(charges, cell, positions)
>>> print(error_bounds(smearing=1.0, lr_wavelength=0.5, cutoff=4.4))
tensor(8.4304e-05)
"""
def __init__(
self,
charges: torch.Tensor,
cell: torch.Tensor,
positions: torch.Tensor,
):
super().__init__(charges, cell, positions)
self.volume = torch.abs(torch.det(cell))
self.sum_squared_charges = (charges**2).sum()
self.prefac = 2 * self.sum_squared_charges / math.sqrt(len(positions))
self.cell = cell
self.positions = positions
[docs]
def err_kspace(
self, smearing: torch.Tensor, lr_wavelength: torch.Tensor
) -> torch.Tensor:
"""
The Fourier space error of Ewald.
:param smearing: see :class:`torchpme.EwaldCalculator` for details
:param lr_wavelength: see :class:`torchpme.EwaldCalculator` for details
"""
return (
self.prefac**0.5
/ smearing
/ torch.sqrt((2 * torch.pi) ** 2 * self.volume / (lr_wavelength) ** 0.5)
* torch.exp(-((2 * torch.pi) ** 2) * smearing**2 / (lr_wavelength))
)
[docs]
def err_rspace(self, smearing: torch.Tensor, cutoff: torch.Tensor) -> torch.Tensor:
"""
The real space error of Ewald.
:param smearing: see :class:`torchpme.EwaldCalculator` for details
:param lr_wavelength: see :class:`torchpme.EwaldCalculator` for details
"""
return (
self.prefac
/ torch.sqrt(cutoff * self.volume)
* torch.exp(-(cutoff**2) / 2 / smearing**2)
)
[docs]
def forward(
self, smearing: float, lr_wavelength: float, cutoff: float
) -> torch.Tensor:
r"""
Calculate the error bound of Ewald.
:param smearing: see :class:`torchpme.EwaldCalculator` for details
:param lr_wavelength: see :class:`torchpme.EwaldCalculator` for details
:param cutoff: see :class:`torchpme.EwaldCalculator` for details
"""
smearing = torch.tensor(smearing)
lr_wavelength = torch.tensor(lr_wavelength)
cutoff = torch.tensor(cutoff)
return torch.sqrt(
self.err_kspace(smearing, lr_wavelength) ** 2
+ self.err_rspace(smearing, cutoff) ** 2
)