Source code for torchpme.tuning.p3m

import math
from itertools import product
from typing import Any
from warnings import warn

import torch

from ..calculators import P3MCalculator
from .tuner import GridSearchTuner, TuningErrorBounds

# Coefficients for the P3M Fourier error,
# see Table II of http://dx.doi.org/10.1063/1.477415
A_COEF = [
    [None, 2 / 3, 1 / 50, 1 / 588, 1 / 4320, 1 / 23_232, 691 / 68_140_800, 1 / 345_600],
    [
        None,
        None,
        5 / 294,
        7 / 1440,
        3 / 1936,
        7601 / 13_628_160,
        13 / 57_600,
        3617 / 35_512_320,
    ],
    [
        None,
        None,
        None,
        21 / 3872,
        7601 / 2_271_360,
        143 / 69_120,
        47_021 / 35_512_320,
        745_739 / 838_397_952,
    ],
    [
        None,
        None,
        None,
        None,
        143 / 28_800,
        517_231 / 106_536_960,
        9_694_607 / 2_095_994_880,
        56_399_353 / 12_773_376_000,
    ],
    [
        None,
        None,
        None,
        None,
        None,
        106_640_677 / 11_737_571_328,
        733_191_589 / 59_609_088_000,
        25_091_609 / 1_560_084_480,
    ],
    [
        None,
        None,
        None,
        None,
        None,
        None,
        326_190_917 / 11_700_633_600,
        1_755_948_832_039 / 36_229_939_200_000,
    ],
    [None, None, None, None, None, None, None, 4_887_769_399 / 37_838_389_248],
]


[docs] def tune_p3m( charges: torch.Tensor, cell: torch.Tensor, positions: torch.Tensor, cutoff: float, neighbor_indices: torch.Tensor, neighbor_distances: torch.Tensor, full_neighbor_list: bool = False, prefactor: float = 1.0, exponent: int = 1, nodes_lo: int = 2, nodes_hi: int = 5, mesh_lo: int = 2, mesh_hi: int = 7, accuracy: float = 1e-3, ) -> tuple[float, dict[str, Any], float]: r""" Find the optimal parameters for :class:`torchpme.calculators.pme.PMECalculator`. For the error formulas are given `here <https://doi.org/10.1063/1.477415>`_. Note the difference notation between the parameters in the reference and ours: .. math:: \alpha = \left(\sqrt{2}\,\mathrm{smearing} \right)^{-1} :param charges: torch.tensor of shape ``(len(positions, 1))`` containing the atomic (pseudo-)charges :param cell: torch.tensor of shape ``(3, 3)``, where ``cell[i]`` is the i-th basis vector of the unit cell :param positions: torch.tensor of shape ``(N, 3)`` containing the Cartesian coordinates of the ``N`` particles within the supercell. :param neighbor_indices: torch.tensor with the ``i,j`` indices of neighbors for which the potential should be computed in real space. :param neighbor_distances: torch.tensor with the pair distances of the neighbors for which the potential should be computed in real space. :param full_neighbor_list: If set to :py:obj:`True`, a "full" neighbor list is expected as input. This means that each atom pair appears twice. If set to :py:obj:`False`, a "half" neighbor list is expected. :param prefactor: electrostatics prefactor; see :ref:`prefactors` for details and common values. :param cutoff: float, cutoff distance for the neighborlist supported :param exponent: :math:`p` in :math:`1/r^p` potentials, currently only :math:`p=1` is :param nodes_lo: Minimum number of interpolation nodes :param nodes_hi: Maximum number of interpolation nodes :param mesh_lo: Controls the minimum number of mesh points along the shortest axis, :math:`2^{mesh_lo}` :param mesh_hi: Controls the maximum number of mesh points along the shortest axis, :math:`2^{mesh_hi}` :param accuracy: Recomended values for a balance between the accuracy and speed is :math:`10^{-3}`. For more accurate results, use :math:`10^{-6}`. :return: Tuple containing a float of the optimal smearing for the :py:class: `CoulombPotential`, a dictionary with the parameters for :py:class:`P3MCalculator` and a float of the optimal cutoff value for the neighborlist computation, and the timing of this set of parameters. Example ------- >>> import torch To allow reproducibility, we set the seed to a fixed value >>> _ = torch.manual_seed(0) >>> positions = torch.tensor([[0.0, 0.0, 0.0], [0.4, 0.4, 0.4]]) >>> charges = torch.tensor([[1.0], [-1.0]]) >>> cell = torch.eye(3) >>> neighbor_distances = torch.tensor( ... [0.9381, 0.9381, 0.8246, 0.9381, 0.8246, 0.8246, 0.6928], ... ) >>> neighbor_indices = torch.tensor( ... [[0, 1], [0, 1], [0, 1], [0, 1], [0, 1], [0, 1], [0, 1]] ... ) >>> smearing, parameter, timing = tune_p3m( ... charges, ... cell, ... positions, ... cutoff=1.0, ... neighbor_distances=neighbor_distances, ... neighbor_indices=neighbor_indices, ... accuracy=1e-1, ... ) """ # if cell is 0 `min_dimension` will be zero as well; we raise a propper error later min_dimension = float(torch.min(torch.linalg.norm(cell, dim=1))) params = [ { "interpolation_nodes": interpolation_nodes, "mesh_spacing": 2 * min_dimension / (2**ns - 1), } for interpolation_nodes, ns in product( range(nodes_lo, nodes_hi + 1), range(mesh_lo, mesh_hi + 1) ) ] tuner = GridSearchTuner( charges=charges, cell=cell, positions=positions, cutoff=cutoff, exponent=exponent, neighbor_indices=neighbor_indices, neighbor_distances=neighbor_distances, full_neighbor_list=full_neighbor_list, prefactor=prefactor, calculator=P3MCalculator, error_bounds=P3MErrorBounds(charges=charges, cell=cell, positions=positions), params=params, ) smearing = tuner.estimate_smearing(accuracy) errs, timings = tuner.tune(accuracy) # There are multiple errors below the accuracy, return the one with the shortest # calculation time. The timing of those parameters leading to an higher error # than the accuracy are set to infinity if any(err < accuracy for err in errs): return smearing, params[timings.index(min(timings))], min(timings) # No parameter meets the requirement, return the one with the smallest error, and # throw a warning warn( f"No parameter meets the accuracy requirement.\n" f"Returning the parameter with the smallest error, which is {min(errs)}.\n", stacklevel=1, ) return smearing, params[errs.index(min(errs))], timings[errs.index(min(errs))]
[docs] class P3MErrorBounds(TuningErrorBounds): r""" " Error bounds for :class:`torchpme.calculators.pme.P3MCalculator`. .. note:: The :func:`torchpme.tuning.p3m.P3MErrorBounds.forward` method takes floats as the input, in order to be in consistency with the rest of the package -- these parameters are always ``float`` but not ``torch.Tensor``. This design, however, prevents the utilization of ``torch.autograd`` and other ``torch`` features. To take advantage of these features, one can use the :func:`torchpme.tuning.p3m.P3MErrorBounds.err_rspace` and :func:`torchpme.tuning.p3m.P3MErrorBounds.err_kspace`, which takes ``torch.Tensor`` as parameters. :param charges: torch.tensor of shape ``(len(positions, 1))`` containing the atomic (pseudo-)charges :param cell: torch.tensor of shape ``(3, 3)``, where ``cell[i]`` is the i-th basis vector of the unit cell :param positions: torch.tensor of shape ``(N, 3)`` containing the Cartesian coordinates of the ``N`` particles within the supercell. Example ------- >>> import torch >>> positions = torch.tensor( ... [[0.0, 0.0, 0.0], [0.4, 0.4, 0.4]], dtype=torch.float64 ... ) >>> charges = torch.tensor([[1.0], [-1.0]], dtype=torch.float64) >>> cell = torch.eye(3, dtype=torch.float64) >>> error_bounds = P3MErrorBounds(charges, cell, positions) >>> print( ... error_bounds( ... smearing=1.0, mesh_spacing=0.5, cutoff=4.4, interpolation_nodes=3 ... ) ... ) tensor(0.0005, dtype=torch.float64) """ def __init__( self, charges: torch.Tensor, cell: torch.Tensor, positions: torch.Tensor ): super().__init__(charges, cell, positions) self.volume = torch.abs(torch.det(cell)) self.sum_squared_charges = (charges**2).sum() self.prefac = 2 * self.sum_squared_charges / math.sqrt(len(positions)) self.cell_dimensions = torch.linalg.norm(cell, dim=1) self.cell = cell self.positions = positions
[docs] def err_kspace( self, smearing: torch.Tensor, mesh_spacing: torch.Tensor, interpolation_nodes: torch.Tensor, ) -> torch.Tensor: """ The Fourier space error of P3M. :param smearing: see :class:`torchpme.P3MCalculator` for details :param mesh_spacing: see :class:`torchpme.P3MCalculator` for details :param interpolation_nodes: see :class:`torchpme.P3MCalculator` for details """ actual_spacing = self.cell_dimensions / ( 2 * self.cell_dimensions / mesh_spacing + 1 ) h = torch.prod(actual_spacing) ** (1 / 3) return ( self.prefac / self.volume ** (2 / 3) * (h * (1 / 2**0.5 / smearing)) ** interpolation_nodes * torch.sqrt( (1 / 2**0.5 / smearing) * self.volume ** (1 / 3) * math.sqrt(2 * torch.pi) * sum( A_COEF[m][interpolation_nodes] * (h * (1 / 2**0.5 / smearing)) ** (2 * m) for m in range(interpolation_nodes) ) ) )
[docs] def err_rspace(self, smearing: torch.Tensor, cutoff: torch.Tensor) -> torch.Tensor: """ The real space error of P3M. :param smearing: see :class:`torchpme.P3MCalculator` for details :param cutoff: see :class:`torchpme.P3MCalculator` for details """ return ( self.prefac / torch.sqrt(cutoff * self.volume) * torch.exp(-(cutoff**2) / 2 / smearing**2) )
[docs] def forward( self, smearing: float, mesh_spacing: float, cutoff: float, interpolation_nodes: int, ) -> torch.Tensor: r""" Calculate the error bound of P3M. .. math:: \text{Error}_{\text{total}} = \sqrt{\text{Error}_{\text{real space}}^2 + \text{Error}_{\text{Fourier space}}^2 :param smearing: see :class:`torchpme.P3MCalculator` for details :param mesh_spacing: see :class:`torchpme.P3MCalculator` for details :param cutoff: see :class:`torchpme.P3MCalculator` for details :param interpolation_nodes: see :class:`torchpme.P3MCalculator` for details """ smearing = torch.tensor(smearing) mesh_spacing = torch.tensor(mesh_spacing) cutoff = torch.tensor(cutoff) interpolation_nodes = torch.tensor(interpolation_nodes) return torch.sqrt( self.err_kspace(smearing, mesh_spacing, interpolation_nodes) ** 2 + self.err_rspace(smearing, cutoff) ** 2 )